
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

OVERVIEW

- Radial or Looped \qquad
- How Pipe Fails \qquad
- Steam or Hot Water
- Pipe Materials \qquad
- Direct Buried or Tunnel \qquad
- Costs
- Design Considerations
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CORROSION

External and Internal
Water + Iron + Oxygen = Rust
Solution:
No Water,
No Iron, or
No Oxygen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DISTRIBUTION DESIGN

- System Concepts
- Definitions
- Basic Formulae
- ΔT
- Hydraulic Profile
- System Components
- System Configurations

It's not how much you've got; it's whether you can use it.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DEFINITIONS

- System (Static/Fill) Pressure: The non-flowing pressure to which the system must be filled to assure flooding of the highest device.
- System pressure is usually set so that there is at least 5 psig measured at the highest device in the system.

Dynamic Pressure:

- The flowing pressure the system pumps must develop to overcome the friction due to piping, coils, valves, fittings, and other devices in the system at a given flow rate.
- Head loss, measured in feet of head $=2.3 \mathrm{I}$ ft.W.C./psi (. $434 \mathrm{psi} / \mathrm{ft}$)

Design Pressure

- The dynamic pressure the system pumps must develop at the maximum flow in the system.
- The differential pressure between the supply and return piping at the pump, i.e. the total head

\qquad
\qquad
\qquad
\qquad
\qquad

SYSTEM HYDRAULIC PROFILE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SYSTEM COMPONENTS

- Pumps/ Piping \qquad
-Parallel Pumping \qquad
-Series Pumping
-Variable Speed Pumping \qquad
- Effect of ΔT on Pump Energy
- Effect of ΔT on Pump Flow
- Effect of ΔT on Dynamic Pressure

PUMPS

- Driving force to move water in piping
- Provide pressure and flow
\qquad
- Primary type
- Centrifugal

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

VARYING PUMP SPEED

$Q_{\text {BTUH }} \approx \mathrm{GPM} \times \Delta \mathrm{T}$

Affinity Laws:
If speed is decreased by 10%, Law I: Flow is Proportional to Shaft
Speed.

Flow is decreased by 10%
Law 2: Pressure is Proportional to the Square of Shaft Speed.

Pressure is decreased by $\sim 18 \%$ (1$.90^{2}$)

Law 3: Power is Proportional to the Cube of Shaft Speed.

Power is decreased by ~27\% (1-.903)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q 位UH}\approx\textrm{GPM}\times\Delta\textrm{T
Q 位UH}\approx\textrm{GPM}\times\Delta\textrm{T

- Increasing supply-to-return differential temperature requires less flow for same heat transferred
- Less flow in a given pipe system results in lower velocity
- Lower velocity equals lower friction and lower pressure loss
- Lower pressure and flow equals lower energy
Three Rules for Chilled Water System Optimization
Reduce Flow
Reduce Flow
Reduce Flow
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CHILLED WATER DELTA-T
 2,000 ton load
 I,000 feet of pipe

Cost of poor ΔT ?
$10^{\circ} \mathrm{F} \Delta \mathrm{T}-4,800 \mathrm{GPM}$ requires $16^{\prime \prime}$ pipe $=\$ 800,000$ \qquad
$16^{\circ} \mathrm{F} \Delta \mathrm{T}-3,000 \mathrm{GPM}$ requires $12^{\prime \prime}$ pipe $=\$ 650,000$ \qquad
Bigger heat exchanger will save $\$ 150,000$ initially \qquad
$\$ 5,000$ every year due to less pumping power

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

