

Metering, Monitoring, and Verification

APPA Institute for Facilities Management June 26, 2024 San Antonio, TX

Purpose of Today's Presentation

To provide a broad understanding of:
 – How to pick a meter
 – How to collect the meter outputs
 – How to convert data into information

Agenda

Metering - Definitions Basic Applications Monitoring - Manual - Automatic Verification - Converting data into information - Metrics

WORDS OF WISDOM

You can manage what you don't measure, but

If you don't measure, you're just guessing

Terminology

- Sensor: An instrument for monitoring, measuring, or recording of a measured variable, e.g., volumetric flow, pressure, temperature, amperage, voltage, etc.
 Meter A sensor, or group of sensors, used to measure a calculated variable, e.g, mass flow, BTU, tons of refrigeration, KW, etc.
- Resolution: The smallest change in a measured value that the instrument can detect, also known as sensitivity.
- Accuracy How close a measured value is to the actual (true) value. (% of RATE, % of FULL SCALE)
- Precision (Repeatability) How close the measured values are to each other

Terminology (cont.)

- Error: The disagreement between a measurement and the true or accepted value
- Bias: A systematic (built-in) error which shifts all measurements by a certain amount.
- Instrument Range: The interval between the minimum and maximum values of the measured variable in which the instrument is accurate
- Volumetric Flow Rate: The flow of the fluid measured as:

 $q = A \times V$ where:

> q = volumetric flow, ft³/min, m³/sec, gal/min, etc. A = area of the pipe, in², cm², etc V = velocity, ft/min, m/sec, etc.

Mass or Energy Flow Rate: The actual quantity or energy of fluid, i.e. pounds per hour, BTU/min. tons, etc. Requires knowledge of fluid and its properties. For example:

Mass

A cubic foot of air weighs about .075 lbs.; a cubic foot of water weighs about 825 times as much, 62 lbs.

<u>Energy</u>

A pound of propane contains about 21,000 BTU; a pound of hydrogen is about 3 times greater; 61,000 BTU

Positive Displacement meters

The positive displacement flow meter measures process fluid flow by precisionfitted rotors as flow measuring elements. Known fixed volumes are displaced between the rotors. The rotation of the rotors are proportional to the volume of the fluid being displaced.

The number of rotations of the rotor is counted by an integral electronic pulse transmitter and converted to volume and flow rate.

Pressure Differential

In a pressure differential device the flow is calculated by measuring the pressure drop over an obstruction inserted in the flow. The differential pressure device is based on <u>Bernoulli's Equation</u>, where the flow velocity is a function of the square root of the pressure drop.

- A. Orifice
- B. Venturi
- C. Flow nozzle
- **D.** Pitot Tube
- E. Elbow Tap

Turbine

Vortex Vortex meters operate on the principle that when a nonstreamlined object is placed in the middle of a flow stream, a series of vortices are shed alternately downstream of the object (Von Karman vortex street). The frequency of the vortex shedding is directly proportional to the velocity of the fluid flow.

: 1000.00000

sensor

lons generate voltage when traveling through the magnetic field.

Electromagnetic

Magnetic flow meters are based on **Faraday's Law of Magnetic** Induction. In a magnetic flow meter, the liquid acts as a conductor as it flows through the pipe. This induces a voltage which is proportional to the average flow velocity - the faster the flow rate, the higher the voltage. This voltage is picked up by sensing electrodes mounted in the meter tube and sent to the transmitter which takes the voltage and calculates the flow rate based on the cross sectional area of the meter tube.

Ultrasonic

Doppler ultrasonic flowmeters operate on the Doppler effect, whereby the transmitted frequency is altered linearly by being reflected from particles and bubbles in the fluid. The net result is a frequency shift between transmitter and receiver frequencies that can be directly related to the flow rate.

Transit-time flowmeters measure the difference in travel time between pulses transmitted in a single path along and against the flow. Two transducers are used, one upstream of the other. Each acts as both a transmitter and receiver for the ultrasonic beam.

Flow meter Characteristics Comparison Sheet								
Flow meter Element	Recommended Service	Turndown	Pressure Loss	Typical Accuracy(%)	Required Upstream pipe diameters	Viscosity Effect	Relative Cost	
Orifice	Clean, dirty fluids; some slurries	4 to 1	Medium	±2 to ±4 of full scale	10 to 30	High	Low	
Venturi tube	Clean, dirty and viscous fluids; some slurries	4 to 1	Low	±1 of full scale	5 to 20	High	Medium	
Flow nozzle	Clean and dirty fluids	4 to 1	Medium	±1 to ±2 of full scale	10 to 30	High	Medium	
Pitot tube	Clean fluids	3 to 1	Very low	±3 to ±5 of full scale	20 to 30	Low	Low	
Elbow meter	Clean, dirty fluids; some slurries	3 to 1	Very low	±5 to ±10 of full scale	30	Low	Low	
Target meter	Clean, dirty viscous fluids; some slurries	10 to 1	Medium	±1 to ±5 of full scale	10 to 30	Medium	Medium	
Variable area	Clean, dirty viscous fluids	10 to 1	Medium	±1 to ±10 of full scale	None	Medium	Low	
Positive Displacement	Clean, viscous fluids	10 to 1	High	±0.5 of rate	None	High	Medium	
Turbine	Clean, viscous fluids	20 to 1	High	±0.25 of rate	5 to 10	High	High	
Vortex	Clean, dirty fluids	10 to 1	Medium	±1 of rate	10 to 20	Medium	High	
Electromagnetic	Clean, dirty, viscous conductive fluids and slurries	40 to 1	None	±0.5 of rate	5	None	High	
Ultrasonic (Doppler)	Dirty, viscous fluids and slurries	10 to 1	None	±5 of full scale	5 to 30	None	High	
Ultrasonic (Transit Time)	Clean, viscous fluids	20 to 1	None	±1 to ±5 of full scale	5 to 30	None	High	
Mass (Coriolis)	Clean, dirty viscous fluids; some slurries	10 to 1	Low	±0.4 of rate	None	None	High	
Mass (Thermal)	Clean, dirty, viscous fluids; some slurries	10 to 1	Low	±1 of full scale	None	None	High	

Metering Compound Values for reference Some commonly metered values require multiple inputs and

- Some commonly metered values require multiple inputs and must be calculated, e.g.
- Chilled water: Tons or BTU/hr; requires volumetric flow, supply and return temperatures (△T), density compensation generally not required
- Hot Water: BTU/hr; same as chilled water
- Steam Flow: Pounds/hr or BTU/hr; requires density compensation using temperature, pressure, and heat content. Some meters can do this dynamically, but most use static values.
- Liquid Fuel Mass or Energy Flow: Natural gas or fuel oils; requires density compensation using temperature, pressure, and heat content.
- Solid Fuel Mass or Energy Flow: Coal or wood; requires mass and heat content

Monitoring

Collecting and organizing the data for use
Manual Data Collection

- Assign responsibility (who)
- Locate all meters to be read (where)
- Learn how to read the meters (how)
- Determine the frequency of data collection (when)
- Create data collection forms (what)
- Plan for future automated collection, i.e. use tablets, netbooks, Microsoft Excel or Access.

Monitoring

- Automated Data Acquisition
 - The automated retrieval of field data from remote locations to a centralized data storage location.
 - Components include both hardware and software

Monitoring – for reference

Automated Data Acquisition Hardware

- Programmable Logic Controllers (PLCs): Devices located near the sensors that have the capability to collect and process local data for download to a central storage location
- "Smart" Meters: Devices that contain software that allow them to process, connect and download data directly to the network
- Network Connection Devices: Interface between the various field device data transfer protocols (Modbus, ControlNet, BacNet, TCP/IP, etc) and the network (phone, wireless, ethernet, etc.)
- Database Servers: computer(s) used to store the data for real-time, historical, and archival use.
- Firewalls: computer(s) used solely to limit access to the servers and data collection network
- Workstation(s): other computers that can connect to the database servers to disseminate and process collected data
- Wiring: between field devices internal to building, between buildings. 4-20 mA, Cat5e, RS485, etc. Need to chose whether to use campus WAN or install dedicated network

Monitoring

- Chilled Water BTU = 0
- Flow = 0
- Supply Temp = 0
- Return Temp = 0
 - *Both* = 0
- Supply Pressure = 0
- Return Pressure = 0
 - **•** *Both* = 0

Monitoring – for reference

Automated Data Acquisition Software

- PLC Programming: software necessary to program PLCs to process data, e.g. convert flow and temperature into BTU's, read field input terminals, load data into storage registers, upload data to other devices, etc.
- Device Calibration: software required to configure field sensors and devices, e.g. pipe size, fluid properties, etc.
- Protocol Converters: software interface modules to convert between the various field device data transfer protocols (Modbus, ControlNet, BacNet, TCP/IP, etc)
- Database Manager: software used to organize and relate the data for end-use, e.g. MSSQL, MySQL, Oracle, etc.
- Firewall: software used to set up authorized access to the database manager, e.g. Kerio, Cisco, etc.
- Workstation: software used to disseminate and gather the field data, e.g. web server, visualization, scheduler, etc.

Utility Meters

Verification

- Energy Management Information System (EMIS): Convert DATA into INFORMATION
 - Gather dispersed and disparate production, energy use (both billing and meter) and budget energy data from multiple sites, multiple energy suppliers and different types of energy suppliers.
 - Validate the data and manage missing or erroneous data.
 - Convert the raw data into usable management information, particularly meaningful Key Performance Indicators (KPIs).
 - Generate meaningful reports that include the analysis of trends and exceptions.
 - Distribute the analyses and reports across multiple sites, internally and externally, in a timely fashion.

Verification

 Metrics Examples Convert INFORMATION into KNOWLEDGE
 – Example Applications

Data Analysis Report Writer Statistical Analysis

Real-Time Web Viewer Data Provisioning to 3rd Party Applications

	crosoft Excel - Bldg_Utilities_v2.8a.1.xls								
<u>F</u> ile	e <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>W</u>	indow E <u>M</u>		e <u>H</u> elp					pe a question for help
i 🗋	📂 🖬 🚑 🛃 🔍 🖤 🐰 🗈 🕰 🛷	17 - CL	- 🤮 Σ 🛄	100% - 10	- B ≣ ≣	≣ \$ % . ‰ .₀₀	≢ ≢ 🖽 🗕 🟅	<mark>≽ - A</mark> ·	•
	Anchor 🗸 🏂 Utility								
	Α		В	С	D	E	F	G	H
1	Menu								
2		Facility	Report for:	Clark-Reib-Somer H		30,000	square feet		
3				Report Date:					
4				Report Period:					
5				to	12/31/2008	Proration On			
6		Utility	Мах	Min	Avg	Total	ECAP Che		BTU/ SQFT
7	ChW Cooling	, Tons	229	(0)	66	· · · · ·	69,115	MMBTU	230,383
8	N	leter A	Campus	Facility Report		575,957			
9	N	leter B	Campus	r deniry Report					
10	ChW Supply Te	emp, F		Start Date: 11/21/	2009				
11	ChW Return Te	emp, F							
12	ChW Differential Te	emp, F		End Date: 12/21	/2009				
13	Steam M	MBTU	Select S	Site:		5,588.379	4,859.460	Klbs	186,279
14	N	leter A			1	5,588.379			
15	N	leter B		rson School of Manageme	•	<u></u>			
16	N	leter C		rson School of Managen opology Annex	nent				
17	Steam To	emp, F		opology Maxwell Museu	m				
18	Electricity, kV	• •		uilding elier Hall		1,452,053	1,452,053	KWh	165,195
19		leter A		Medical Science		1,452,053			
20		leter B		Pavilion					
21		leter C	BIOIO	jy Annex					
22		leter D		Calc Report	Close	-			
23	· ·				Close	17,455.72		·	581,857
24									
25	NOTE: If the total cells are yellow then the	e totals ha	ve been prorate	ed due to insufficient	t data. See the	cell comment.			
26									
27									
28 29									
29 30									
31									
32									
33									
34	N N Penet / Charle / Date / Matural Date / Date	Daramatara	/ Change History	/					
	Heport / Charts / Data / Virtual_Data / Rate_		·· · ·				E		•
D <u>r</u> av	w 🗸 🔓 A <u>u</u> toShapes 🕶 🔪 🔌 🔲 🔘 🔠 🐗	ັ້ 🚨	🏭 🖄 👻 🚄 🛨	<u> A</u> – 🔳 🛲 式 🔳	- 💷 🖕				

Ready

DateRng	(All)	-
Year	2008	-
Month	(All)	-
MonthYr	(All)	-
Hour	(All)	-
Occupancy	Occ	-
Weekday	(All)	-
Daytype	(All)	-
Day	(All)	-
Holiday	(All)	-
5degBin	(All)	-
TempRng	(All)	-

Avg ChW1_	Tons	
OSA1_DB	-	Total
	93.61581458	169.85
	93.4403	159.36
	93.41629938	161.52
	93.25277817	152.55
	92.94974775	161.15
	92.78548108	169.57

DateRng	(All)	•
Year	2007	-
Month	(All)	-
MonthYr	(All)	-
Hour	(All)	-
Occupancy	Occ	-
Weekday	(All)	-
Daytype	(All)	-
Day	(All)	-
Holiday	(All)	-
5degBin	(All)	-
TempRng	(All)	-

Avg ChW1_Tor	าร		
OSA1_DB	-	Total	
94	.80115045	24	1.35
94	17880401	23	8.69
94	.08429039	24	2.23
93	3.97539586	21	8.94
93	3.77890126	24	4.64
93	3.70609417	26	6.78

E

H 🗸 🕨 🖌 ptScatterChartDateRng / ptLPchartDaytype / ptLPchartDateRng / ptLPchartYear / ptScatterChartWeekDay / ptL 🗨

🗖 Network Plot 🛛 🗖 🗖 🗙

Move legend.

00-10:01

(119027.9, 452814.6) 1:4003 (1535.1 × 836.8)

Questions & Answers

Thank You!

